Hoppa till innehållet

Genomik & transkriptomik data

Se även: Riktlinjer för datapublicering - Genomik & transkriptomik | Tillgängliga tjänster - Genomik & transkriptomik

Publicerad data

Data tillgängliga på den europeiska versionen av COVID-19 Data Portalen

Publicerade rådata och sammansatta sekvensdata som härrör ifrån COVID-19-utbrottet, inkluderande isolat och information som relateras till coronavirusens biologi.

Data tillgängliga från svenska forskargrupper

Vänligen notera att listan över tillgängliga dataset från svenska forskargrupper uppdateras manuellt och därför inte är fullständig. Om du vill att ditt dataset skall synliggöras eller vill korrigera information om dina dataset, vänligen kontakta oss.
Genomik & transkriptomik data
Sida 1 av 2 (13 resultat)
Projekt Senast uppdaterad Tillgängliga data
Edén A, Kanberg N, Gostner J, Fuchs D, Hagberg L, [...], Gisslén M
Objective: To explore whether hospitalized patients with SARS-CoV-2 and neurologic symptoms have evidence of CNS infection, inflammation and injury using CSF biomarker measurements. Methods: We assessed CSF SARS-CoV-2 RNA along with CSF biomarkers of intrathecal inflammation (CSF white blood cell count, neopterin, β2-microglobulin (β2M) and immunoglobulin G-index), blood-brain-barrier (BBB) integrity (albumin ratio), and axonal injury (CSF neurofilament light chain protein [NfL]) in 6 patients with moderate to severe COVID-19 and neurologic symptoms who had undergone a diagnostic lumbar puncture. Neurologic symptoms and signs included features of encephalopathies (4/6), suspected meningitis (1/6) and dysgeusia (1/6). SARS-CoV-2 infection was confirmed by rtPCR analysis of nasopharyngeal swabs.
01.10.2020 Researchers can apply for access to anonymized data
Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J, [...], Unge C
Cell 183 (1)  P158-168.E14
SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.
01.10.2020 Supplementary materials
Parrot T, Gorin J, Ponzetta A, Maleki K, Kammann T, [...], Sandberg J
Science Immunology 5 (51) 
Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in the circulation of patients with active disease paired with strong activation. Furthermore, transcriptomic analyses indicated significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and later release back into the circulation when disease is resolved. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their possible involvement in COVID-19 immunopathogenesis.
28.09.2020 Raw data file
Hellman U, Karlsson M, Engström-Laurent A, Cajander S, Dorofte L, [...], Blomberg A
J. Biol. Chem.  
Severe corona virus disease 2019 (Covid-19) is characterized by inflammation of the lungs with increasing respiratory impairment. In fatal Covid-19, lungs at autopsy have been filled with a clear liquid jelly. However, the nature of this finding has not yet been determined.The aim of the study was to demonstrate if the lungs of fatal Covid-19 contain hyaluronan as it is associated with inflammation and acute respiratory distress syndrome (ARDS) and may have the appearance of liquid jelly.Lung tissue obtained at autopsy from three deceased Covid-19 patients was processed for hyaluronan histochemistry using a direct staining method and compared with staining in normal lung tissue.Stainings confirmed that hyaluronan is obstructing alveoli with presence in exudate and plugs, as well as in thickened perialveolar interstitium. In contrast, normal lungs only showed hyaluronan in intact alveolar walls and perivascular tissue. This is the first study to confirm prominent hyaluronan exudates in the alveolar spaces of Covid-19 lungs, supporting the notion that the macromolecule is involved in ARDS caused by SARS-CoV-2. The present finding may open up for new treatment options in severe Covid-19, aiming at reducing the presence and production of hyaluronan in the lungs.
25.09.2020 All data are contained within the manuscript.
Bastard P, Rosen L, Zhang Q, Michailidis E, Hoffmann H, [...], Casanova J
Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
Dillner J, Elfström M, Blomqvist J, Eklund C, Lagheden C, [...], Conneryd Lundgren K
[preprint]  medRxiv  
Background: The extent that antibodies to SARS-CoV-2 may protect against future virus-associated disease is unknown. Method: We analyzed 12928 healthy hospital employees for SARS-CoV-2 antibodies and compared results to participant sick leave records (Clinical trial registration: ClinicalTrials.gov). Results: Subjects with viral serum antibodies were not at excess risk for future sick leave (Odds Ratio (OR): 0.85 (95% Confidence Interval (CI) (0.85 (0.43-1.68)). By contrast, subjects with antibodies had an excess risk for sick leave in the past weeks (OR: 3.34 (2.98-3.74)). Conclusion: Presence of viral antibodies marks past disease and protection against excess risk of future disease.
18.09.2020 Pseudonymised, individual-level data available on request.
Ling J, Hickman R, Li J, Lu X, Lindahl J, [...], Järhult J
Viruses 12 (9) 1026
Background: During the COVID-19 pandemic, the virus evolved, and we therefore aimed to provide an insight into which genetic variants were enriched, and how they spread in Sweden. Methods: We analyzed 348 Swedish SARS-CoV-2 sequences freely available from GISAID obtained from 7 February 2020 until 14 May 2020. Results: We identified 14 variant sites ≥5% frequency in the population. Among those sites, the D936Y substitution in the viral Spike protein was under positive selection. The variant sites can distinguish 11 mutational profiles in Sweden. Nine of the profiles appeared in Stockholm in March 2020. Mutational profiles 3 (B.1.1) and 6 (B.1), which contain the D936Y mutation, became the predominant profiles over time, spreading from Stockholm to other Swedish regions during April and the beginning of May. Furthermore, Bayesian phylogenetic analysis indicated that SARS-CoV-2 could have emerged in Sweden on 27 December 2019, and community transmission started on February 1st with an evolutionary rate of 1.5425 × 10−3 substitutions per year. Conclusions: Our study provides novel knowledge on the spatio-temporal dynamics of Swedish SARS-CoV-2 variants during the early pandemic. Characterization of these viral variants can provide precious insights on viral pathogenesis and can be valuable for diagnostic and drug development approaches.
14.09.2020 Spatial temporal appearance of each variant and their mutation profile and clade information; Other supplementary materials.
Glans H, Gredmark-Russ S, Olausson M, Falck-Jones S, Varnaite R, [...], Brave A
[preprint]  medRxiv  
To understand the risk of transmission of SARS-CoV-2 in hospitalized COVID-19 patients we simultaneously assessed the presence of SARS-CoV-2 RNA, live infectious virus in the airways, and virus-specific IgG and neutralizing antibodies in sera in 36 hospitalized COVID-19 patients. SARS-CoV-2 could be cultured from four patients, all with low or undetectable antibody response. Our data suggests that the level of SARS-CoV-2 antibodies may correlate to risk for shedding live SARS-CoV-2 virus in hospitalized COVID-19 patients.
13.09.2020 Available on request due to privacy restrictions
Consiglio C, Cotugno N, Sardh F, Pou C, Amodio D, [...], Brodin P
Cell 183  1-14
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is typically very mild and often asymptomatic in children. A complication is the rare multisystem inflammatory syndrome in children (MISC) associated with COVID-19, presenting 4–6 weeks after infection as high fever, organ dysfunction, and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines, and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2, and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T cell subsets, interleukin (IL)-17A, and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C.
06.09.2020 Plasma Protein Levels; Normalized Autoantibody Binding across 9,341 Autoantigens
Hanke L, Vidakovics Perez L, Sheward D, Das H, Schulte T, [...], McInerney G
Nature Communications 11 4420
SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the ‘up’ and ‘down’ conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.